Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-13, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2284450

ABSTRACT

The IL-6/IL-6R or IL-6/GP130 protein-protein interactions play a significant role in controlling the development of chronic inflammatory diseases, such as rheumatoid arthritis, Castleman disease, psoriasis, and, most recently, COVID-19. Modulating or antagonizing protein-protein interactions of IL6 binding to its receptors by oral drugs promises similar efficacy to biological therapy in patients, namely monoclonal antibodies. In this study, we used a crystal structure of the Fab part of olokizumab in a complex with IL-6 (PDB ID: 4CNI) to uncover starting points for small molecule IL-6 antagonist discovery. Firstly, a structure­based pharmacophore model of the protein active site cavity was generated to identify possible candidates, followed by virtual screening with a significant database Drugbank. After the docking protocol validation, a virtual screening by molecular docking was carried out and a total of 11 top hits were reported. Detailed analysis of the best scoring molecules was performed with ADME/T analysis and molecular dynamics simulation. Furthermore, the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) technique has been utilized to evaluate the free binding energy. Based on the finding, one newly obtained compound in this study, namely DB15187, may serve as a lead compound for the discovery of IL-6 inhibitors.Communicated by Ramaswamy H. Sarma.

2.
Mol Divers ; 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2094713

ABSTRACT

IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could form strong interactions and build stable protein-ligand complexes with IL-6. These potential compounds may serve as a basis for further developing small molecule IL-6 inhibitors in the future.

3.
Struct Chem ; 33(5): 1707-1725, 2022.
Article in English | MEDLINE | ID: covidwho-2014349

ABSTRACT

The main protease 3CLpro is one of the potential targets against coronavirus. Inhibiting this enzyme leads to the interruption of viral replication. Chalcone and its derivatives were reported to possess the ability to bind to 3CLpro protease in the binding pocket. This study explored an in-house database of 269 chalcones as 3CLpro inhibitors using in silico screening models, including molecular docking, molecular dynamics simulation, binding free energy calculation, and ADME prediction. C264 and C235 stand out as the two most potential structures. The top hit compound C264 was with the Jamda score of -2.8329 and the MM/GBSA binding energy mean value of -28.23 ± 3.53 kcal/mol, which was lower than the reference ligand. Despite the lower mean binding energy (-22.07 ± 3.39 kcal/mol), in-depth analysis of binding interaction suggested C235 could be another potential candidate. Further, in vitro and in vivo experiments are required to confirm the inhibitory ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02000-3.

4.
PLoS One ; 17(4): e0266632, 2022.
Article in English | MEDLINE | ID: covidwho-1779775

ABSTRACT

Interleukin 6 (IL-6) is a cytokine with various biological functions in immune regulation, hematopoiesis, and inflammation. Elevated IL-6 levels have been identified in several severe disorders such as sepsis, acute respiratory distress syndrome (ARDS), and most recently, COVID-19. The biological activity of IL-6 relies on interactions with its specific receptor, IL-6Rα, including the membrane-bound IL-6 receptor (mIL-6R) and the soluble IL-6 receptor (sIL-6R). Thus, inhibition of the interaction between these two proteins would be a potential treatment for IL-6 related diseases. To date, no orally available small-molecule drug has been approved. This study focuses on finding potential small molecules that can inhibit protein-protein interactions between IL-6 and its receptor IL-6Rα using its crystal structure (PDB ID: 5FUC). First, two pharmacophore models were constructed based on the interactions between key residues of IL-6 (Phe74, Phe78, Leu178, Arg179, Arg182) and IL-6Rα (Phe229, Tyr230, Glu277, Glu278, Phe279). A database of approximately 22 million compounds was screened using 3D-pharmacophore models, molecular docking models, and ADMET properties. By analyzing the interactive capability of successfully docked compounds with important amino acids, 12 potential ligands were selected for further analysis via molecular dynamics simulations. Based on the stability of the complexes, the high interactions rate of each ligand with the key residues of IL-6/IL-6Rα, and the low binding free energy calculation, two compounds ZINC83804241 and ZINC02997430, were identified as the most potential IL-6 inhibitor candidates. These results will pave the way for the design and optimization of more specific compounds to combat cytokine storm in severe coronavirus patients.


Subject(s)
Interleukin-6 , Molecular Dynamics Simulation , Humans , Interleukin-6/antagonists & inhibitors , Ligands , Molecular Docking Simulation , Receptors, Interleukin-6/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL